Explore this graph

Des-blog

Recent Posts

Friday Fave for October 6

Look for and make use of structure. Supporting students in engaging in this mathematical practice is the major objective of this week’s Friday Fave.

In Match My Picture, we work first to create a need. When you’re writing equations for two lines, it’s just fine to think about the slopes and y-intercepts independently of each other.

When you’re writing equations for nine lines, it may start to get a bit tedious. Plus, you may start to notice that these lines have something in common. Not only that, but what is changing is changing in a predictable way. It’s y=-2x plus something.

Hopeful that you’ve noticed the structure, we invite you to capture that structure in symbols.

Finally, we show you how to capture it with our tools. We tell you about lists. We invite you to use your newfound structure-capturing powers to match more pictures, and to design your own structured decorative masterpiece.

Taking students from needing a structure, to representing it formally, to using it creatively—this is what makes Match My Picture a Friday Fave.

While you’re thinking about matching, have a look at these activities too:

FEATURED ACTIVITIES

Match My Line

Match My Parabola

Card Sort: Derivative Match

Friday Fave for September 29

The Fave is writing these words at 9:29 on 9/29 (or the arguably palindromic 9:29 on 29/9 for those outside the US). That means it’s autumn where the Fave resides, and in autumn one’s thoughts turn to lasers.

That’s right. Lasers.

Like how much easier it would be if you could just zap those fallen leaves with lasers. Or how soon it will be winter and many people will have no choice but to amuse themselves with indoor cats chasing laser pointers.

And what goes great with lasers (besides cats and fallen leaves)? Mirrors. Which leads us to the Fundamental Theorem of Laser Pointers:

Lasers + Mirrors = Angle Play

That equation right there is the premise of this week’s Friday Fave: Laser Challenge.

You set the angle of the laser and the mirrors, then click “Try It!” and see the results of your work.

image

Negative angles, reflex angles, angles greater than 360°….try them all!

We offer several challenges of increasing complexity, and then we invite you to design your own laser challenge. (You’ll need to show it’s solvable before turning it over to your partner.)

So if your students are studying geometry, trigonometry, or physics, come have them celebrate autumn—the season of lasers—with Laser Challenge!

While our minds are on angles, here are a few more angle-based activities to enjoy with a warm cup of cider (but sorry, no lasers).

Complete the Arch

Sector Area

Polygraph: Angle Relationships

Desmos: Now With More Automatic Feedback

I’m convinced the best choice we made when we started making digital activities was assuming a human would provide some feedback on student work. When technologists assume that a computer will provide all the feedback, they constrain their activities to the limitations of computers rather than their highest aspirations for student learning.

For example, we knew we wanted students to argue mathematically with written responses. We knew we wanted students to model graphically with hand-drawn sketches. We knew we wanted students to represent their opinions mathematically with graphs and equations and numbers.

Written responses, sketches, and opinions are either challenging or impossible for computers to assess in 2017, which is why you don’t find them in a lot of digital math activities.

Up until now, we have only offered automatic feedback on a very small handful of item types – multiple choice, for instance – and then passed the remainder of student work on to the teacher as a resource for class and individual conversations.

We’re certain that was the right place to start. Over the last several months, however, we’ve asked ourselves what we can do to offer teachers more automatic insight into student thinking without sacrificing what we love about our activities.

So we now display one of these five icons on each screen:

  • Dash: It isn’t possible for students to do any work on this screen. Save your time and attention for other screens.
  • Check: Everything on this screen is correct.
  • Cross: Something on this screen is incorrect.
  • Warning: Something on this screen isn’t merely incorrect but it indicates the student may have misunderstood the question itself – intervene ASAP.
  • Dot: This screen needs human interpretation.

A few notes about this process:

  • Lots of student work still falls into that final category. The most interesting mathematical thinking is still very hard for a computer to assess. All we can do is shrug and hand it off to much smarter humans.
  • We are very conservative in our application of correct checks and incorrect crosses. For example, on our multiple choice + explanation items, we will never display a check because we have no way of knowing if the explanation is correct.
  • We had to write unique code to display these icons. That meant that across our hundreds of activities and thousands of interactions between students and math, a Desmos faculty member devised a unique definition of “correctness.” Then she applied it, and two other faculty members reviewed it, asking themselves, “Can we really be so certain here? Is this diminishing student thinking at all?”

We can now offer teachers automatic feedback on all kinds of rich mathematical experiences. For one example, we can ask students to create a sinusoid for their partner. Any sinusoid:

The partner then graphs it algebraically.

And we’ll give the teacher automatic feedback, no matter what sinusoid the students originally created!

We realize that a teacher’s time and attention are finite and precious. We hope that the addition of these icons to our activities will help teachers spend them wisely.